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1 Introduction. Auxiliary tools

1.1 Relations and mappings

Definition 1 Any subset of the cartesian product A ˆ B is called a binary
relation, or just relation, between sets A and B.

The fact that pa, bq P R, where R is a relation between A and B, is usually
denoted aRb. E.g. for the sets A “ tAdam, Socrates, David Beckhamu and B “
tEve, Xanthippe, Maria Theresau one can introduce the partnership relation
P “ t(Adam,Eve), (Socrates,Xanthippe)u. Another example of a relation is the
ordering on R, represented by the symbol ď, or the equality of elements in R.

Definition 2 Let R be a relation on the set A (i.e. R Ă AˆA). R is called

(i) symmetric iff
pa, bq P Rô pb, aq P R;

(ii) transitive iff
pa, bq P R&pb, cq P Rñ pa, cq P R;

(iii) reflexive iff
@a P A : pa, aq P R.

E.g. equality of real numbers is a symmetric, transitive and reflexive relation.
The relations ă, ď on R are transitive, ď is in addition reflexive.

Mapping f of a set A into B is a relation f Ă AˆB which satisfies:

@a P A D!b P B : pa, bq P f.

We also write f : AÑ B, f : a ÞÑ b, fpaq “ b.

Image of the set A1 under f : AÑ B is the set

fpA1q :“ tfpaq; a P A1u.

Injective mapping is characterized by the property

fpa1q “ fpa2q ñ a1 “ a2.

Inverse mapping to an injective mapping f : A Ñ B is the mapping f´1 :
fpAq Ñ A defined by

f´1pbq “ aô fpaq “ b.

Surjective mapping satisfies

fpAq “ B.

We also say that f maps A onto B.
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Bijective mapping, or isomorphism, is an injective and surjective mapping.
If there exists an isomorphism between A and B, then we say that A and B are
isomorphic.

Using isomorphisms we can categorize sets: We say that a set is finite if it is
isomorphic with the set t1, . . . , nu for some natural number n P N. Countable
set is isomorphic to N. A set is infinite if it is not finite. A set is uncountable
if it is neither finite nor countable.

E.g. N, Z, Q are countable, R is uncountable.

Compound mapping. Let f : A Ñ B and g : B Ñ C. Then g ˝ f : A Ñ C
is a mapping composed of f and g, defined by

g ˝ fpaq “ gpfpaqq.

1.2 Linear spaces

Definition 3 A non-empty set V is called a linear space if there are relations
` : V ˆ V Ñ V (addition of vectors) and ¨ : R ˆ V Ñ V (multiplication by
scalars), if for any ~x, ~y, ~z P V and α, β P R the following holds:

1. @~x, ~y P V : ~x` ~y “ ~y ` ~x;

2. @~x, ~y, ~z P V : p~x` ~yq ` ~z “ ~x` p~y ` ~zq;

3. @α, β P R @~x P V : α ¨ pβ ¨ ~xq “ pαβq ¨ ~x;

4. @α P R @~x, ~y P V : α ¨ p~x` ~yq “ α ¨ ~x` α ¨ ~y;

5. @α, β P R @~x P V : pα` βq ¨ ~x “ α ¨ ~x` β ¨ ~x;

6. @~x P R : 1 ¨ ~x “ ~x;

7. D~0 P V @~x P V : 0 ¨ ~x “ ~0.

The elements of a linear space are called vectors. Real numbers in the
context of the multiplication ¨ : Rˆ V Ñ V are called scalars. The element ~0
is called the zero element or the zero vector. From the properties 1.–7. one
can deduce the following properties of the zero vector ~0 P V :

• @~x P V : ~x`~0 “ ~x,

• @α P R: α ¨~0 “ ~0,

• @~x P V @α P R, α ‰ 0: α ¨ ~x “ ~0 ñ ~x “ ~0.

Example 1 The following are linear spaces:

• Euclidean spaces R, R2, Rn (with componentwise addition and scalar mul-
tiplication);

• trivial space t~0u (α~0 “ ~0`~0 “ ~0);
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• the space F of real functions (pαfqpxq :“ fpαxq, pf`gqpxq :“ fpxq`gpxq);

• the space of polynomials P;

• the space of polynomials Pn of degree ď n.

Definition 4 We say that W is a subspace of a linear space V iff W Ă V and
W with the relations `, ¨ adopted from V is a linear space.

E.g. Pn is a subspace of P and both are subspaces of F .
To decide whether a set is a subspace of V it may be inconvenient to verify

all 7 properties of Definition 3. The following assertion simplified this process.

Theorem 1 Let V be a linear space and H ‰ W Ă V . Then W is a subspace
of V if and only if

(i) @~x, ~y PW : ~x` ~y PW ,

(ii) @~x PW , α P R: α~x PW .

Intersection of linear spaces is a linear space. On the other hand, union of
linear spaces is in general not a linear space. For example, let A “ tpα, 0q; α P
Ru and B “ tp0, βq; β P Ru be subspaces of R2. Then AXB “ t~0u is the trivial
space, while A Y B “ tpα, βq; α “ 0 or β “ 0u is not a linear space since e.g.
p1, 0q ` p0, 1q “ p1, 1q R AYB.

Definition 5 Let ~x1, ~x2, . . . , ~xn be elements of a linear space V and α1, α2, . . . , αn
be real numbers. Any vector

α1~x1 ` α2~x2 ` . . .` αn~xn

is called a linear combination of the vectors ~x1, ~x2, . . . , ~xn. The numbers α1, α2, . . . , αn
are called the coeficients of the linear combination.

Definition 6 If all coefficients are zero then a linear combination is said to be
trivial. A nontrivial linear combination is such that at least one of its coefficients
is nonzero.

Note that a trivial linear combination always equals zero vector.

Definition 7 A finite set of vectors t~x1, . . . , ~xnu is called linearly dependent if
there exists their nontrivial linear combination which equals zero vector. Briefly,
we say that vectors ~x1, . . . , ~xn are linearly dependent.

A set of vectors t~x1, . . . , ~xnu is linearly independent if it is not linearly
dependent.

Two and more vectors are linearly dependent if and only if one of the vectors
is a linear combination of the remaining ones. E.g., functions cos2 x, sin2 x,
cos 2x are linearly dependent elements of the space F , because for any x P R it
holds: cos 2x “ cos2 x` p´1q sin2 x.

Linear (in)dependence can be generalized to infinite sets of vectors as follows.
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Definition 8 A set M of vectors is called linearly dependent if there exists a
finite linearly dependent subset of M .

A set M is called linearly independent if it is not linearly dependent.

An example of a linearly independent set in P is the set t1, x, x2, x3, x4, . . .u.

Definition 9 Linear span of a finite set t~x1, . . . , ~xnu is the set of all linear
combinations of these vectors. Linear span of an infinite set M is the union of
linear spans of all finite subsets of M .

Linear span of t~x1, . . . , ~xnu is denoted x~x1, . . . , ~xny, linear span of a set M
is denoted xMy. If M is a subset of a linear space V then xMy is the smallest
linear space containing M .

Definition 10 A set Ă V is called a basis of a linear space V if:

(i) B is linearly independent,

(ii) xBy “ V .

Theorem 2 Every linear space has a basis. If B1 and B2 are bases of V then
they both are infinite or have the same number of elements.

Theorem 3 Let vectors ~x1, . . . , ~xn form a basis of a linear space V . For any
~x P V there exists exactly one n-tuple of numbers pc1, . . . , cnq such that

~x “ c1~x1 ` . . .` cn~xn.

Definition 11 The numbers c1, . . . , cn from the previous theorem are called the
coordinates of the vector ~x in the basis ~x1, . . . , ~xn.

Definition 12 The number of elements in any basis of a linear space V is called
its dimension and denoted by dimV . Special cases are:

• The trivial space, whose dimension is 0.

• Spaces with infinite bases, in which case we define dimV “ `8.

If M is a subspace of a linear space V then dimM ď dimV .

Theorem 4 Let V be a linear space with dimV “ n, and M “ t~x1, . . . , ~xmu.
The following is true:

1. If M is linearly independent then m ď n.

2. If m ą n then M is linearly dependent.

3. Let m “ n. Then M is linearly independent iff xMy “ V .
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1.3 Linear mappings and matrices

Definition 13 A mapping f of a linear space V into a linear space W is called
linear if it satisfies for every α P R and ~x, ~y P V :

fpα~x` ~yq “ αfp~xq ` fp~yq.

Kernel of f is the set

ker f :“ t~x P V ; fp~xq “ ~0u.

Range of f is the set
Rpfq :“ fpV q.

A linear mapping f is injective if and only if ker f “ t~0u.

Theorem 5 If ~x1, . . . , ~xk are linearly dependent then fp~x1q, . . . , fp~xkq are also
linearly dependent. If in addition f is injective then these properties are equiv-
alent:

~x1, . . . , ~xk are linearly dependent ô fp~x1q, . . . , fp~xkq are linearly dependent.

Definition 14 A real (complex) matrix of type pm,nq is a symbol

A “

¨

˚

˚

˚

˝

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
am,1 am,2 . . . am,n

˛

‹

‹

‹

‚

“ paijq
j“1,...,n
i“1,...,m,

where for i “ 1, . . . ,m and j “ 1, . . . , n, the symbols aij are real (complex)
numbers.

The set of all (real) matrices of type pm,nq will be denoted Rmˆn. Addition of
matrices and multiplication of a matrix by a real number is defined componen-
twise. Consequently, the set Rmˆn is a linear space.

Definition 15 We say that B P Rnˆm is the transposed matrix to the matrix
A P Rmˆn iff

@i “ 1, . . . ,m @j “ 1, . . . , n : aij “ bji.

The transposed matrix is denoted B “ AJ.

Definition 16 We say that A is symmetric if A “ AJ.

Product of A P Rmˆn and B P Rnˆp is a matrix C P Rmˆp whose components
satisfies:

cij “
n
ÿ

k“1

aikbkj , i “ 1, . . . ,m, j “ 1, . . . , p.
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Matrix multiplication is non-commutative, i.e. in general AB ‰ BA. For all
matrices of proper types (such that multiplication is possible) it holds:

ApBCq “ pABqC,

pA`BqC “ AC`BC,

pαAqB “ ApαBq “ αpABq, α P R.

Definition 17 A square matrix I “ pei,jq P Rnˆn is called the unit matrix if
its components satisfy: ei,j “ 0 for i ‰ j and ei,j “ 1 for i “ j.

Definition 18 We say that B P Rnˆn is the inverse matrix to A P Rnˆn iff
AB “ BA “ I. The inverse matrix is denoted B “ A´1. If A´1 exists then A
is called nonsingular. Otherwise A is called a singular matrix.

Definition 19 Rank of a matrix A, denoted rank A, is the number of its lin-
early independent rows.

It also holds that the rank is equal to the number of linearly independent
columns, i.e. rank AJ “ rank A. A matrix A P Rnˆn is nonsingular if and
only if rank A “ n (we say that it has full rank).

Definition 20 Permutation of n elements is an ordered n-tuple of numbers
1, 2, . . . , n such that it contains every number just once.

Note: there exist n! distinct permutations of n elements.

Definition 21 Let pi1, i2, . . . , inq be a permutation of n elements. The number
of inversions of this permutation is the number of pairs pik, ilq such that ik ą il
and k ă l.

Definition 22 For every permutation π “ pi1, . . . , inq we define its sign sgnπ
as follows:

sgnπ “

#

`1 if π has an even number of inversions,

´1 if π has an odd number of inversions.

Interchanging two elements in a permutation causes the change of its sign.

Definition 23 Let A “ pai,jq P Rnˆn. Determinant of A is the number

det A “
ÿ

π“pi1,i2,...,inq

psgnπqa1,i1a2,i2 ¨ ¨ ¨ an,in .

In the above formula, the summation is done over all permutations of n ele-
ments, i.e. there are n! addends.

Theorem 6 Let A,B P Rnˆn. Then
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1. det A “ 0 if and only if A is singular,

2. det AJ “ det A,

3. detpABq “ pdet Aqpdet Bq,

4. detpA´1q “ 1{det A.

5. If B can be obtained from A by interchanging two rows then det B “

´det A.

6. If A has two identical rows then det A “ 0.

Note that for A P R2ˆ2 the determinant can be expressed as follows:

det A “ a11a22 ´ a12a21.

For A P R3ˆ3 the formula for determinant reads:

det A “ a11a22a33 ` a12a23a31 ` a13a21a32

´ a11a23a32 ´ a12a21a33 ´ a13a22a31.

Definition 24 A number λ P C is called an eigenvalue of a (complex) matrix
A P Cnˆn if there exists a nonzero vector ~u P Cn such that

A~u “ λ~u.

The vector ~u is called the eigenvector of A associated with the eigenvalue λ. The
set of all eigenvalues of A is called the spectrum of A and is denoted σpAq.

The number λ is an eigenvalue of A if and only if the system pA ´ λIq has
a nontrivial solution, i.e. when A ´ λI is singular, which is equivalent to the
condition detpλI´Aq “ 0. The polynomial χApλq :“ detpλI´Aq is called the
characteristic polynomial of the matrix A. Hence, λ is an eigenvalue of A if it
is a root of χA. We remark that a real polynomial can have complex roots, thus
a real matrix can have complex eigenvalues. But if a real matrix is symmetric
then all its eigenvalues are real.

1.4 Systems of linear equations

In what follows we shall identify vectors from Rn with matrices of type pn, 1q,
i.e. ~a P Rn means the same as ~a P Rnˆ1.

Definition 25 Let A P Rmˆn, ~x “

¨

˚

˝

x1

...
xn

˛

‹

‚

P Rn and ~b “

¨

˚

˝

b1
...
bm

˛

‹

‚

P Rm. Then

the matrix equality
A~x “ ~b
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is called a system of m linear equations for n unknowns. The matrix A is called
the system matrix and the vector ~b is the vector of right hand sides. Extending
the system matrix by the vector of right hand sides (for clarity separated by a

vertical line) we obtain the matrix pA|~bq P Rmˆpn`1q, called the extended system
matrix.

Definition 26 A vector ~a “ pα1, . . . , αnq P Rn is said to be a solution of the

system A~x “ ~b if it satisfies:

A

¨

˚

˝

α1

...
αn

˛

‹

‚

“

¨

˚

˝

b1
...
bm

˛

‹

‚

.

Theorem 7 (Frobenius) A system A~x “ ~b has a solution if and only if

rank A “ rank A|~b,

i.e. when the extended system matrix has the same rank as the system matrix.

Definition 27 Let A~x “ ~b be a system of m linear equations with n uknowns
and C~x “ ~d is a system of k linear equations with the same number n of
unknowns. We say that these systems are equivalent iff they have identical sets
of solutions.

Theorem 8 To every system A~x “ ~b there exists an equivalent system C~x “ ~d
whose matrix C is upper triangular.

Definition 28 If at least one element of ~b is nonzero, then we say that the
system A~x “ ~b is nonhomogeneous. If vector ~b is identically zero, we call the
system homogeneous and write

A~x “ ~0.

Theorem 9 The set M0 of all solutions to a homogeneous system A~x “ ~0 with
n unknowns is a linear subspace of Rn.

Theorem 10 Let A~x “ ~0 be a homogeneous system of linear equations with n
unknowns and denote k :“ n´ rank A. Then there exist k linearly independent
vectors ~u1, . . . , ~uk P Rn which form a basis of the set M0 of all solutions to
A~x “ ~0, i.e.

M0 “ x~u1, . . . , ~uky.

Consequently, dimM0 “ n´ rank A.

Definition 29 Any solution ~v P Rn of a nonhomogeneous system A~x “ ~b is
called a particular solution of this system.

The system A~x “ ~0 is called the associated homogeneous system to the
system A~x “ ~b.
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Theorem 11 1. Let ~v be a particular solution to the nonhomogeneous sys-
tem A~x “ ~b and ~u be any solution of the associated homogeneous system
A~x “ ~0. Then ~v ` ~u is also a solution to the system A~x “ ~b.

2. Let ~v and ~w be two particular solutions to the nonhomogeneous system
A~x “ ~b. Then ~v ´ ~w is a solution to the associated homogeneous system
A~x “ ~0.

Theorem 12 Let ~v be a particular solution of the system A~x “ ~b and M0 be
the set of all solutions to the associated homogeneous system A~x “ ~0. Then the
set M of all solutions to A~x “ ~b is given as follows:

M “ t~v ` ~u; ~u PM0u.

Theorem 13 (Cramer’s rule) Let A be a nonsingular matrix. Then the i-th

component of the solution to A~x “ ~b satisfies:

αi “
det Bi

det A
,

where the matrix Bi is identical to A up to i-th column, which is replaced by
the column of right hand sides.

2 Iterative methods for systems of linear equa-
tions

In this section we shall deal with the numerical solution of the system

A~x “ ~b.

We assume that the reader is familiar with the Gaussian elimination method, an
example of the so-called direct methods. Its main advantage is the universality
— the method can solve in exact arithmetics any system with a nonsingular
matrix. A disadvantage is its computational complexity (Opn3q) and also that
during the computation the user has no information about the result. For
systems with large sparse matrices A, which arise in many practical problems,
or for problems where the matrix is not given explicitely or it is expensive to
assemble, it can be advantageous to use iterative methods. These methods use in
principle only multiplication of vectors by A and throughout the computation
they improve the approximation of the exact solution. The convergence of
iterative methods can be either asymptotic or in finite number of iterations.

2.1 Classical iterative methods

Classical iterative methods are based on the splitting A “ M `N such that
the matrix M is nonsingular and easily invertible and M and N are chosen in
a suitable way. Using the identity A~x “ ~b we obtain:

~x “ ~x`M´1p~b´A~xq.

10



0 1000 2000 3000 4000

1e-10

1e-5

1e+0

iteration number k

||
x
-x

_
k
||

Figure 1: Transition effect of a classical iterative method.

Given an initial approximation ~x0 of the solution, one can define the iterative
process as follows:

~xk “ ~xk´1 `M´1p~b´A~xk´1q “ pI´M´1Aq~xk´1 `M´1~b.

From these identities one can show that the approximation error satisfies the
estimate

}~x´ ~xk}

}~x´ ~x0}
ď }pI´M´1Aqk} ď }I´M´1A}k,

where for k large }pI ´M´1Aqk} « ρpI ´M´1Aqk (the symbol ρpAq denotes
the so-called spectral radius of A, i.e. maxt|λ|; λ P σpAqu). We therefore see
that the methods converge to the exact solution if

ρpI´M´1Aq ă 1.

Even if this condition is satisfied, it can hold that }I´M´1A}k ą 1. In such a
case one can observe the so-called transition effect, i.e. the approximation error
first grows and only after certain number of iterations it starts decreasing (see
Fig. 1).

Examples of classical iterative methods. The following methods are based
on the splitting A “ D´L´U, where D is the diagonal part, ´L is the strict
lower triangle and ´U is the strict upper triangle of A. From the equation

pD´ L´Uq~x “ ~b

one can derive particular methods.
Jacobi’s method is defined by the iteration

D~xk “ L~xk´1 `U~xk´1 `~b.

Writing this identity componentwise (xki denotes the i-th component of ~xk), we
obtain for i “ 1, . . . , n:

xki “
1

aii

˜

bi ´
n
ÿ

j“1,j‰i

aijx
k´1
j

¸

.

11



A disadvantage of this method can be that during the computation one needs
to store two successive approximations ~xk´1, ~xk. Gauss-Seidel’s method
differs from the previous one in that it immediately uses the newly computed
components of ~xk, i.e.

xki “
1

aii

˜

bi ´
i´1
ÿ

j“1

aijx
k
j ´

n
ÿ

j“i`1

aijx
k´1
j

¸

.

The computed components can thus replace the old ones within the same com-
putational array. In the matrix form this method reads:

D~xk “ L~xk `U~xk´1 `~b.

From the Gauss-Seidel method one can derive the Successive over-relaxation
method (SOR), which works with a relaxation parameter ω P r0, 2s and is
defined by the relation

D~xk “ ωpL~xk `U~xk´1 `~bq ` p1´ ωqD~xk´1,

i.e. it combines the Gauss-Seidel method with the previous approximation.

Example 2 Consider the matrix

A “

ˆ

0.01 ´0.4
0 0.01

˙

.

The convergence of the Jacobi method for this matrix depends on the properties
of the matrix

I´D´1A “

ˆ

0 ´40
0 0

˙

.

Since this matrix has only one eigenvalue λ “ 0, the condition ρpI´D´1Aq ă
1 is satisfied and hence Jacobi’s method converges. On the other hand, }I ´
D´1A} “ 40 ą 1, hence during the computation one can observe the transition
effect.

2.2 Krylov subspace methods

An important class of iterative methods is based on the idea of projecting the
system A~x “ ~b onto a sequence of the Krylov spaces and so obtain successive
approximations.

Definition 30 Let A P Rnˆn, ~v P Rn and k ď n. The k-th Krylov space is the
set

KkpA, ~vq :“ x~v,A~v,A2~v, . . . ,Ak´1~vy.

The methods which will be mentioned in the sequel, belong to the general class
of the so-called projection methods which construct approximations in the form

~xk P ~x0 ` Sk, ~rk K Ck,

12



where ~rk :“ ~b´A~xk is the residual and Sk and Ck are suitable subspaces. The
space Sk is usually the Krylov subspace KkpA, ~r0q, but other choices are also
possible, e.g. AKkpA, ~r0q. By the choice of the space Ck one can achieve the
optimality of the approximation in the sense that the approximation error ~x´~xk
is minimal in some norm. If the dimension of Sk, Ck increases, then for k “ n
we obtain Cn “ Rn and from the condition ~rk K Rn it follows that ~rn “ ~0, i.e.
~xn “ ~x is the exact solution. In other words, if the dimensions of Sk, Ck increase
then the projection methods find the exact solution of the system A~x “ ~b in at
most n steps.

2.2.1 Conjugate gradient method (CG)

This method is intended for symmetric positive definite matrices.

Definition 31 A matrix A P Rnˆn is called positive definite if for every
nonzero vector ~x P Rn it holds:

A~x ¨ ~x ą 0.

The expression
}~x}A :“

?
~x ¨A~x

is called the energetic norm or A-norm. We say that the vectors ~u,~v P Rn are
A-orthogonal if

~u ¨A~v “ 0.

The approximations in CG are constructed according to the formula

~xk :“ ~xk´1 ` γk´1~pk´1,

where ~pk´1 is called the conjugate vector and γk´1 is the step length. These
parameters are determined as follows:

• ~pk is chosen in the form ~pk :“ ~rk ` δk~pk´1 in such a way that it is A-
orthogonal to ~pk´1, i.e. ~pk ¨A~pk´1 “ 0, which can be achieved for

δk :“
~rk ¨ ~rk

~rk´1 ¨ ~rk´1
.

• γk´1 is such that the energetic norm }~x´~xk}A is minimal. That happens
if

γk´1 :“
~rk´1 ¨ ~pk´1

~pk´1 ¨A~pk´1
“

~rk´1 ¨ ~rk´1

~pk´1 ¨A~pk´1
.

Using the above properties, one can show that CG is a Krylov subspace method
since

~xk P ~x0 `KkpA, ~r0q, ~rk K KkpA, ~r0q.

The CG method can also be interpreted as a method for finding the minimum
of the quadratic functional 1

2~x ¨A~x´ ~x ¨
~b. The following algorithm represents

the standard implementation of CG.
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Algorithm A1 Conjugate gradient method

input A, ~b, ~x0

~r0 :“ ~b´A~x0

~p0 :“ ~r0

for k “ 1, 2, . . .

γk´1 :“
~rk´1¨~rk´1

~pk´1¨A~pk´1

~xk :“ ~xk´1 ` γk´1~pk´1

~rk :“ ~rk´1 ´ γk´1A~pk´1

δk :“ ~rk¨~rk
~rk´1¨~rk´1

~pk :“ ~rk ` δk~pk´1

end

We see that each iteration involves 1 multiplication of the matrix A with
a vector and during the process it is necessary to store only 4 vectors. CG is
therefore very efficient particularly for large sparse matrices. If the matrix is
symmetric positive definite then CG in exact arithmetics finds the solution after
at most n iterations. In practice, however, due to rounding errors the vectors
t~pku lose their A-orthogonality (and t~rku lose their orthogonality), which causes
the delay of convergence, i.e. even after n steps ~xn ‰ ~x. This deficiency can
be fixed by multiple orthogonalization of ~rk with respect to all t~riu

k´1
i“0 (double

orthogonalization is usually sufficient).
Now we mention some facts about the convergence rate of CG. For this

reason we introduce the condition number.

Definition 32 Let A be a symmetric positive definite matrix. The condition
number of A is defined as

κpAq :“
λmaxpAq

λminpAq
,

where λmaxpAq, λminpAq stands for the largest and smallest eigenvalue of A,
respectively.

Denoting ~ek :“ ~xk ´ ~x the error of k-th approximation then the following esti-
mate holds:

}~ek}A
}~e0}A

ď 2

˜

a

κpAq ´ 1
a

κpAq ` 1

¸k

.

Notice that the fraction in brackets in the previous inequality is always less
than 1. If κpAq is close to 1 then the estimate says that the error decreases
very rapidly. For ill-conditioned matrices (i.e. κpAq is large) the number in
brackets is close to 1 and the estimate can be too pesimistic (it overvalues the
real size of the error). Ill-conditioning however ofter causes a slow convergence
of the method. This fact can be overcome by preconditioning (see Section 2.3),

i.e. by replacing the system A~x “ ~b by an equivalent system Â~̂x “ ~̂b with a
matrix Â that is better conditioned than A.

14



2.2.2 Generalized minimal residual method (GMRES)

The GMRES method can be characterized as a projection method which satis-
fies:

~xk P ~x0 `KkpA, ~r0q, ~rk K AKkpA, ~r0q.

Its property is that in each iteration it minimizes the residual norm }~rk}. It
leads to the least squares problem whose efficient implementation is technically
demanding. For that reason we do not present its algorithm here. An inconve-
nient property of GMRES is that it produces a sequence of orthogonal vectors
t~vku that have to be stored (we say that the method generates long recurrences)
and so a large amount of memory may be required. For this price however the
method can solve any system with a nonsingular matrix.

Similarly as for CG, due to rounding errors the convergence of GMRES is
delayed since the system t~vku loses its orthogonality. For GMRES it is hence also
usefull to perform reorthogonalization. The memory requirements are usually
reduced by the so-called restart — the program stores only the last m vectors
t~viu

k
i“k´m`1 instead of the whole sequence.

2.2.3 Biconjugate gradient method (BiCG)

The last example of a frequently used Krylov subspace method is BiCG, which
in contrast to the previous methods solves simultaneously two systems: A~x “ ~b
ans AJ~y “ ~c. Denoting ~sk :“ ~c ´ AJ~yk, then BiCG is characterized by the
relations

~xk P ~x0 `KkpA, ~r0q, ~rk K KkpAJ, ~s0q,

~yk P ~y0 `KkpAJ, ~s0q, ~sk K KkpA, ~r0q.

Vectors t~rku and t~sku are mutually biorthogonal: ~si ¨ ~rj “ 0 for i ‰ j.

Algorithm A2 Biconjugate gradient method (BiCG)

input A, ~b, ~c, ~x0, ~y0

~r0 :“ ~p0 :“ ~b´A~x0

~s0 :“ ~q0 :“ ~c´AJ~y0

for k “ 1, 2, . . .

γk´1 :“
~sk´1¨~rk´1

~qk´1¨A~pk´1

~xk :“ ~xk´1 ` γk´1~pk´1

~rk :“ ~rk´1 ´ γk´1A~pk´1

~yk :“ ~yk´1 ` γk´1~qk´1

~rk :“ ~sk´1 ´ γk´1A
J~qk´1

δk :“ ~sk¨~rk
~sk´1¨~rk´1

~pk :“ ~rk ` δk~pk´1

~qk :“ ~sk ` δk~qk´1

end

This method generates short recurrences, i.e. it is efficient in terms of mem-
ory usage, and can be applied to any nonsingular matrix. However, in compari-
son with CG and GMRES the convergence of BiCG is not guaranteed. Actually,

15



if A is nonsymmetric then it may happen that ~rk ¨ ~sk “ 0 and the algorithm
terminates.

2.3 Preconditioning

As it was shown in Section 2.2.1, the convergence of Krylov subspace methods
is closely related to the condition number of the matrix A. We shall demon-
strate the idea of preconditioning for CG (one can proceed similarly with other

methods). Let C be any nonsingular matrix. Then the system A~x “ ~b with a
symmetric positive definite matrix can be written as follows:

pC´1AC´JqpCJ~xq “ C´1~b.

Denoting Â :“ C´1AC´J, ~̂x :“ CJ~x and ~̂b :“ C´1~b, the new system can

be written as Â~̂x “ ~̂b, where Â is again symmetric positive definite. This
system can be solved by CG and the approximations of the new and original
system satisfy the relation ~xk “ C´J~̂xk. For completeness we present here the
algorithm of the preconditioned CG method:

Algorithm A3 Preconditioned conjugate gradient method (PCG)

input A, ~b, ~x0

~r0 :“ ~b´A~x0

~z0 :“ C´JC´1~r0

~p0 :“ ~z0

for k “ 1, 2, . . .

γ̂k´1 :“
~zk´1¨~rk´1

~pk´1¨A~pk´1

~xk :“ ~xk´1 ` γ̂k´1~pk´1

~rk :“ ~rk´1 ´ γ̂k´1A~pk´1

~zk :“ C´JC´1~rk
δ̂k :“ ~zk¨~rk

~zk´1¨~rk´1

~pk :“ ~zk ` δ̂k~pk´1

end

We remark that in this algorithm we never compute the inverse matrix C´1,
but the operation ~zk :“ C´JC´1~rk is transformed to successive solution of two
systems

C~y “ ~rk, CJ~zk “ ~y.

For an efficient solution of the new system it is necessary to choose the matrix
C according to the following rules:

• The matrix C is chosen in such a way that CG converges as fast as possible.
In ideal case, Â “ C´1AC´J « I.

• It has to be possible to solve the systems C~y “ ~rk and CJ~zk “ ~y fast.

• If A is sparse then also C should be sparse. Otherwise the memory and
computational requirements increase substantially.
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An efficient choice of the preconditioning matrix often arises from the given
(e.g. physical) problem or from a specific structure of the matrix A. Commonly
used general preconditioning techniques include e.g.:

• incomplete Cholesky decomposition (for symmetric positive definite ma-
trices), which constructs a lower triangular matrix C such that A « CCJ,

• incomplete LU decomposition (for general nonsingular matrices): A «

LU, where L is lower triangular and U is upper triangular. The precon-
ditioned system then has the form

pL´1AU´1qpU~xq “ L´1~b.

3 Introduction to functional analysis

In this section we shall study some abstract terms such as the metric, the norm
and the scalar product. Before introducing the general notion we start by the
example of space of continuous functions.

3.1 Space of continuous functions

In what follows, Ω denotes an open connected set in R, R2 or R3. We remind
that an open connected set is called domain. For simplicity we shall assume
that Ω is bounded. The boundary of Ω will be denoted BΩ, for the closure we
use the symbol Ω :“ ΩY BΩ.

Let CpΩq denote the linear space of all continuous functions in Ω. For any
functions u, v P CpΩq we define the following operations:

Definition 33 Scalar product of functions u, v P CpΩq is the (real) number

pu, vq :“

ż

Ω

upxqvpxq dx.

Norm of a function u P CpΩq is the number

}u}2 :“
a

pu, uq “

d

ż

Ω

u2pxq dx.

Distance of two functions u, v P CpΩq is the number

%2pu, vq :“ }u´ v}2.

The distance %2 is also called the metric. One can easily show some basic
properties of the above defined scalar product, norm and metric:

Theorem 14 Let u, v, w P CpΩq and α, β P R. Then

(i) pu, uq ě 0,
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(ii) pu, vq “ pv, uq,

(iii) pαu` βv,wq “ αpu,wq ` βpv, wq,

(iv) pu, uq “ 0 ô u ” 0 v Ω.

Theorem 15 Let u, v P CpΩq and α P R. Then

(i) }u}2 “ 0 ô u ” 0 v Ω,

(ii) }αu}2 “ |α|}u}2,

(iii) }u` v}2 ď }u}2 ` }v}2.

Theorem 16 Let u, v, w P CpΩq. Then

(i) %2pu, vq “ 0 ô u “ v v Ω,

(ii) %2pu, vq “ %2pv, uq,

(iii) %2pu,wq ď %2pu, vq ` %2pv, wq.

In addition to the above introduced norm and metric, it is possible to define
the following norm and metric in the space of continuous functions:

}u}8 :“ max
xPΩ

|upxq|

%8pu, vq :“ }u´ v}8.

One can show that Theorem 15 and 16 hold if we replace } ¨ }2 by } ¨ }8 and %2

by %8.

Example 3 Consider the functions

upxq :“

#

10 sinp1000πxq for x P r0, 1
1000 s

0 otherwise
and vpxq “ 0.

Let us compute the distance of u and v:

%2pu, vq “

d

ż 1{1000

0

100 sin2
p1000πxq dx

“

d

100

„

x

2
´

sinp2000πxq

4000π

1{1000

x“0

“
1

2
?

5

.
“ 0, 224.

%8pu, vq “ max
xPr0,1{1000s

|10 sinp1000πxq| “ 10.
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The metric %8 appears more natural for the measurement of the deviation
of two functions since it measures the maximal pointwise difference. Anyway,
there exist reasons for using %2 instead of %8. First, the metric %2 is introduced
using the scalar product, which plays an important role in certain problems. On
the set of continuous functions it is not possible to define a scalar product with
reasonable properties, which would induce the norm } ¨ }8 and the metric %8.
Another reason is that many applications deal with discontinuous functions. It
is not easy to extend %8 to a more general class, while the extension of %2 to
a sufficiently general class of functions is very straightforward and leads to the
space L2.

3.2 Spaces LppΩq

Definition 34 Let p P r1,8q. The space LppΩq is the set

LppΩq :“

"

u : Ω Ñ R;

ż

Ω

upxq dx ă 8,

ż

Ω

|upxq|p dx ă 8

*

.

equipped by the norm

}u}p,Ω :“

ˆ
ż

Ω

|upxq|p dx

˙1{p

.

If it is evident what domain is considered then we shall write only }u}p.
From the definition it follows that every continuous function in Ω belongs to
LppΩq for all p P r1,8q. These spaces contain also many other functions — e.g.
discontinuous or unbounded ones. We remind that for correctness the integrals
used in Definition 34 have to be considered in the so called Lebesgue sense.

Example 4 Consider the function

upxq :“
1
?
x

defined in Ω :“ p0, 1q. It holds:

}u}1 “

ż 1

0

1
?
x
dx “

“

2
?
x
‰1

x“0
“ 2,

and thus u P L1p0, 1q. On the other hand

}u}2 “

d

ż 1

0

1

x
dx “ `8,

hence u R L2p0, 1q. The function

vpxq :“
1
3
?
x
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belongs both to L1p0, 1q and L2p0, 1q, since

ż 1

0

vpxq dx “

ż 1

0

1
3
?
x
dx “

3

2
,

ż 1

0

|vpxq|2 dx “

ż 1

0

1
3
?
x2

dx “ 3.

If the domain Ω is bounded then always L2pΩq Ă L1pΩq, or more generally, for
1 ď p ď q ă 8 it holds that LqpΩq Ă LppΩq.

Example 5 The function

sgnx :“

$

’

&

’

%

´1 for x ă 0

0 for x “ 0

1 for x ą 0

is an element of the space Lpp´1, 1q for any p P r1,8q, because

ż 1

´1

| sgnx|p dx “

ż 0

´1

| sgnx|p dx`

ż 1

0

| sgnx|p dx “

ż 0

´1

1 dx`

ż 1

0

1 dx “ 2,

and thus } sgnx}p “
p
?

2. Similarly, the function

upxq :“

#

0 for x ‰ 0

10 for x “ 0

belongs to Lpp´1, 1q, p P r1,8q, and its norm is }u}p “ 0. We see that the
norm is independent of the function value at x “ 0. It is even not needed that
the function is defined at 0.

We have shown that the spaces LppΩq contain also some discontinuous and
unbounded functions. A function that is zero everywhere except for a single
point has zero norm, i.e. it is in some sense equialent to the zero function. More
generally, if a function equals zero everywhere in Ω except for a set of measure
zero, then its norm is zero. For example, every finite and every countable set
has zero measure.

Definition 35 Let the functions u, v P LppΩq, p P r1,8q be equal almost every-
where in the domain Ω, i.e. everywhere except for a set of zero measure (where
their values are different or some of the functions is not defined). The we say
that u and v are equivalent in LppΩq and we write u “ v in LppΩq.

Functions u and v from the above definition are considered identical in the space
LppΩq. Equivalent functions u, v in LppΩq are characterized by the property

ż

Ω

|upxq ´ vpxq|p dx “ 0.

In LppΩq one can introduce the metric %p,Ωpu, vq :“ }u´ v}p,Ω. In addition,
the space L2pΩq is endowed with the scalar product from Definition 33:

pu, vqΩ :“

ż

Ω

upxqvpxq dx, u, v P L2pΩq.
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The finiteness of the scalar product of any u, v P L2pΩq is a consequence of the
Schwarz inequality:

@u, v P L2pΩq : |pu, vqΩ| ď }u}2,Ω}v}2,Ω,

which is a special case of the following more general statement:

Theorem 17 (Hölder’s inequality) Let p, q P p1,8q satisfy the relation

1

p
`

1

q
“ 1.

Then for all functions u P LppΩq and v P LqpΩq it holds:

ˇ

ˇ

ˇ

ˇ

ż

Ω

upxqvpxq dx

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

Ω

|upxq|p dx

˙1{pˆż

Ω

|vpxq|q dx

˙1{q

.

3.3 Metric spaces

In this section we introduce the metric, a generalization of the notion of distance.
We shall state some basic properties of metric spaces and name some particular
examples.

Definition 36 Let X be a nonempty set. The function % : XˆX Ñ R is called
a metric, if it satisfies for all x, y, z P X:

(i) %px, yq “ 0 ô x “ y,

(ii) %px, yq “ %py, xq,

(iii) %px, zq ď %px, yq ` %py, zq.

The pair pX, %q is called a metric space.

The properties of the metric it follows that % attains only nonnegative values
(try to prove it!).

Example 6 Let X be the set of all cities in the Czech Republic. A metric on
X can be introduced e.g. as the direct euclidean distance, the shortest distance
vie roads or the travel time of a car.

Example 7 Let X “ Rn, n P N. Let us define the functions

dpp~x, ~yq :“

˜

n
ÿ

i“1

|xi ´ yi|
p

¸1{p

for p P r1,8q,

d8p~x, ~yq :“ max
i“1,...,n

|xi ´ yi|.

It can be shown that these functions are metrics on Rn. The metric d1 is called
the counting metric, d2 is the euclidean metric and d8 is the maximum metric.
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Example 8 Levenshtein’s metric mearures the similarity of text strings. It is
defined as the minimal number of character substitutions, insertions or deletions
necessary to transform one string to another. E.g. levpdog,frogq “ 2, because
the transformation can be done as follows:

dog Ñ fog Ñ frog.

It can be shown that lev satisfies the axioms of the metric.

Example 9 Functions %2 and %8 are metrics on the space CpIq of continuous
functions on a closed bounded interval I. The same holds on the space CpKq,
where K is a compact (i.e. closed and bounded) set in Rn, n P N.

Example 10 The pair pLppΩq, %pq, p P r1,8q is a metric space. Since contin-
uous function on Ω belong to LppΩq, the pair pCpΩq, %pq is a subspace of the
metric space pLppΩq, %pq.

3.3.1 Sets in metric spaces

Using the notion of metric, it is possible to generalize many objects introduced
through the euclidean distance in Rn such as a ball, a neighbourhood or an open
set.

Definition 37 Let pX, %q be a metric space.

• A ball centered at x P X with the radius r ą 0 is the set

Brpxq :“ ty P X; %px, yq ă ru.

• A set O Ă X is called a neighbourhood of a point x, if there exists a
radius r ą 0, such that O contains the ball Brpxq.

• If O is a neighbourhood of the point x, then the set Oztxu is called a ring
neighbourhood of x.

• A set M is called open, if for every point x PM there exists a ball centered
at x and contained in M .

• A set is called closed, if its complement in X is open.

Example 11 A ball in the space R2 centered at the origin has the following
shape:

a) square whose vertices lie on the axes and the barycenter at the origin, if
the counting metric d1 is considered;

b) circle centered at the origin, if the euclidean metric d2 is considered;

c) square whose sides are parallel to the axes and the barycenter lies at the
origin, if the maximum metric d8 is considered.
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Definition 38 Let pX, %q be a metric space, x P X and M ĂM .

• A point x is an interior point of the set M , if there exists a radius r ą 0
such that Brpxq Ă M . The set of all interior points of M is denoted
IntM .

• A point x is a boundary point of the set M , if every neighbourhood of x
contains some point from M and some point from XzM . The set of all
boundary points of M is called the boundary of M and is denoted BM .

• The closure of the set M is the set M :“M Y BM .

• A point x is an accumulation point of the set M , if every its ring neigh-
bourhood contains some point from M . The set of all accumulation points
of M is denoted HrM .

• A point x is an isolated point of the set M , if x P M , but x is not an
accumulation point of M . The set of all isolated points of M is denoted
IzM .

There are many relations between the previously defined sets. We give a few
examples:

IntM ĂM ĂM, IntM X BM “ H,

M “ HrM Y IzM, HrM X IzM “ H,

IzM Ă BM, IntM Ă HrM.

3.3.2 Convergence

Definition 39 A sequence txnunPN in a metric space pX, %q is called conver-
gent, if there exists an element x P X such that

lim
nÑ8

%pxn, xq “ 0.

We say that x is the limit of the sequence txnu and write

x “ lim
nÑ8

xn in pX, %q, or xn Ñ x in pX, %q.

The limit in metric space shares many properties of the classical limit in Rn.
E.g. every sequence has at most one limit. For the metric %p, p P r1,8s, on
function spaces it holds that

p lim
nÑ8

unqpxq “ lim
nÑ8

punpxqq,

i.e. the limit in %p coinsides with the pointwise limit. When examining the
convergence of a sequence of functions, it is therefore suitable to check whether
the sequence has a pointwise limit.
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Example 12 Consider the sequence of functions tunu,

unpxq :“

#

10 sinpnπxq for x P r0, 1
n s

0 else

in the space Cpr0, 1sq. To decide whether the sequence is convergent or not, we
first need to find a suitable “candidate” for the limit. We compute the pointwise
limit at every x P r0, 1s: Clearly limunp0q. For every x P p0, 1s one can find
a number n0 P N such that x ą 1

n0
, so that for n ě n0 we have unpxq “ 0,

and thus limunpxq “ 0. The pointwise limit of our sequence is hence the zero
function. It is possible to show that

%2pun, 0q “
1
?

2n
, which implies lim %2pun, 0q “ 0,

and therefore
limun “ 0 in pCpr0, 1sq, %2q.

Further,
%8pun, 0q “ 10,

which implies that in the space pCpr0, 1sq, %8q the zero function is not the limit
of the sequence tunu (in fact, the sequence does not have any limit in this space,
so it is not convergent).

The above example reveals that the existence of a limit depends on the consid-
ered metric.

For bounded domains we can characterize relations between various conver-
gences.

Theorem 18 Let Ω be a bounded domain in Rd, d P t1, 2, 3u, and tunu be a
sequence of functions.

(i) If un Ñ u in pCpΩq, %8q, then un Ñ u also in pLppΩq, %pq, p P r1,8q.

(ii) If un Ñ u in pLppΩq, %pq, then unpxq Ñ upxq for almost all x P Ω.

Definition 40 Let %1 and %2 be metrics on the set X. If there exist constants
α, β ą 0 such that for every x, y P X:

α%1px, yq ď %2px, yq ď β%1px, yq,

then we say that %1 and %2 are equivalent on X.

If %1 and %2 are equivalent metrics then

xn Ñ x in pX, %1q ô xn Ñ x in pX, %2q.

Equivalent metrics also induce the same open and closed sets.
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3.3.3 Complete metric space

Definition 41 A sequence txnu in a metric space pX, %q is called a Cauchy
sequence if

@ε ą 0 DN P N @m,n P N : m,n ą N ñ %pxm, xnq ă ε.

The distance of elements of a Cauchy sequence tends to zero when the indices
of these elements increase. Every convergent sequence is Cauchy, however the
reciprocal assertion does not hold true in general.

Definition 42 A metric space pX, %q is called complete, if every Cauchy se-
quence is convergent in this space.

Example 13 The spaces pRn, dpq, n P N, p P r1,8s are complete (due to
Bolzano-Cauchy theorem). The space pQ, d2q is not complete (e.g. the sequence
tp1` 1

n q
nu is Cauchy but its limit e satisfies e R Q).

Example 14 Consider the sequence of functions tunu,

unpxq :“ 2n`1
?
x,

in the space pCpr´1, 1sq, %2q. Its pointwise limit is sgnx, a discontinuous func-
tion. However it holds that

%2pun, sgnq “

d

2

pn` 1qp2n` 3q
,

so that %2pun, sgnq Ñ 0, and consequently tunu converges to sgn in the space
pL2p´1, 1q, %2q. The sequence is hence Cauchy, but not convergent in pCpr´1, 1sq, %2q.
This shows that the space pCpr´1, 1sq, %2q is not complete. Similarly one can
show that the space pCpΩq, %pq is incomplete for any p P r1,8q.

Theorem 19 The space pCpΩq, %8q is complete.

Theorem 20 The space pLppΩq, %pq, p P r1,8q, is complete.

3.3.4 Dense set, separable space

Metric spaces in general do not have linear structure like linear spaces. Thus it
is not possible to define a basis. Every metric space, however, contains a subset
whose elements can approximate every element of the space.

Definition 43 We say that a set M Ă X is dense in the metric space pX, %q,
if M “ X.

If M is a dense set then for every x P X there exists a sequence txnu of elements
of M such that

xn Ñ x.
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Theorem 21 The set of all polynomials is dense in LppΩq, p P r1,8q.

A consequence of the previous theorem is that for every function f P LppΩq and
every number ε ą 0 there exists a polynomial fε satisfying

}f ´ fε}p ă ε.

The set of all polynomials is however quite large (namely uncountable).

Definition 44 We say that a metric space is separable, if it contains a dense
set which is at most countable.

If a space is separable then there exists a sequence of its elements which form a
dense set.

Theorem 22 The space LppΩq, p P r1,8q, is separable.

An example of a countable dense set in LppΩq is the set of all polynomials with
rational coefficients.

3.4 Normed linear spaces

Many sets have both properties of metric and linear spaces. In particular, in
LppΩq we can multiply by a scalar and add functions, measure their distance
and evaluate the norm. In such case we speak about a normed linear space.

Definition 45 Let X be a linear space. A function } ¨ } : X Ñ R is called a
norm in X, if @x, y P X, α P R:

(i) }x} “ 0 ô x “ ~0,

(ii) }αx} “ |α|}x},

(iii) }x` y} ď }x} ` }y}.

If there exists a norm in X then X is called a normed linear space.

With the help of a norm one can always define a metric:

%px, yq :“ }x´ y},

thus every normed linear space is also a metric space.

Definition 46 A complete normed linear space is called a Banach space.

Example 15 Examples of norms and normed linear spaces:

• The set R with the absolute value }x} :“ |x|;

• Rn, n P N, with the norm }px1, . . . , xnq}p :“ p
řn
i“1 |xi|

pq
1{p

, p P r1,8q, or
with the norm }px1, . . . , xnq}8 :“ maxi“1,...,n |xi|;
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• CpΩq with the norm } ¨ }p, p P r1,8s;

• LppΩq with the norm } ¨ }p, p P r1,8q;

• C1pΩq :“ tf P CpΩq; @i “ 1, . . . , n Bf
Bxi

P CpΩqu with the norm }f}C1pΩq :“

}f}
8,Ω `

řn
i“1 }

Bf
Bxi
}
8,Ω.

A special class of norms are matrix norms.

Definition 47 Let } ¨ }X denote a norm in Rn and } ¨ }Y a norm in Rm. An
induced norm in the space of matrices Rmˆn is defined by the relation

}A}XY :“ max
~xPRnzt~0u

}A~x}Y
}~x}X

“ max
~xPRn,}~x}X“1

}A~x}Y .

Induced norms have the following properties:

}AB}XY ď }A}XY }B}XY , ρpAq ď }A}XY , }I}XY “ 1.

Example 16 Examples of induced matrix norms:

• }A}1 :“ max}~x}1“1 }A~x}1 “ maxj“1,...,n

řm
i“1 |aij |;

• }A}2 :“ max}~x}2“1 }A~x}2 “
a

ρpAJAq;

• }A}8 :“ max}~x}8“1 }A~x}8 “ maxi“1,...,m

řn
j“1 |aij |.

There exist many other matrix norms that are not induced by any vector norm.
A frequently used is the Frobenius norm

}A}F :“

g

f

f

e

m
ÿ

i“1

n
ÿ

j“1

|aij |2.

One can show that the Frobenius norm is not induced but still it is multiplica-
tive:

}AB}F ď }A}F }B}F .

3.5 Spaces H1pΩq

It is sometimes necessary to work with derivatives of functions from the space
LppΩq. Before introducing the new type of derivative, we mention a motivating
example. Consider a function u P C1pr0, 1sq. If v P C1pr0, 1sq, vp0q “ vp1q “ 0,
then by integration by parts we have:

ż 1

0

u1pxqvpxq dx “ rupxqvpxqs1x“0 ´

ż 1

0

upxqv1pxq dx “ ´

ż 1

0

upxqv1pxq dx.

Here we see that, while the left integral requires the existence of u1, the expres-
sion on the right is defined also for u P L1p0, 1q. This leads to the following
definition.
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Definition 48 Let u P LppΩq. A function g P LppΩq is called the generalized
partial derivative of the function u with respect to i-th variable, if for every
v P C1pΩq, vBΩ “ 0, it holds:

ż

Ω

gpxqvpxq dx “ ´

ż

Ω

upxq
Bv

Bxi
pxq dx.

We write g “ Bu
Bxi

in LppΩq.

Example 17 Let us compute the generalized derivative of upxq :“ |x| in the
interval p´1, 1q. For v P C1pr´1, 1sq, vp´1q “ vp1q “ 0 it holds:

´

ż 1

´1

|x|v1pxq dx “ ´

ż 0

´1

p´xqv1pxq dx´

ż 1

0

xv1pxq dx

“ rxvpxqs0x“´1 ´

ż 0

´1

vpxq dx´ rxvpxqs1x“0 `

ż 1

0

vpxq dx “

ż 1

´1

sgnxvpxq dx.

Hence u1 “ sgn in Lpp´1, 1q for every p P r1,8q.

Example 18 Consider the function upxq “ sgnx. For v P C1pr´1, 1sq, vp´1q “
vp1q “ 0 it holds:

´

ż 1

´1

upxqv1pxq dx “ ´

ż 0

´1

p´v1pxqq dx´

ż 1

0

v1pxq dx

“ rvpxqs0x“´1 ´ rvpxqs
1
x“0 “ 2vp0q “ 2

ż 1

´1

δ0pxqvpxq dx,

where δ0 is the so-called Dirac δ-function (in fact it is not a function but a
distribution). In certain sense it holds that sgn1 “ 2δ0, however δ0 R L

ppΩq.

Not every function from LppΩq has a generalized derivative in LppΩq.

Definition 49 The space H1pΩq is defined as follows:

H1pΩq :“ tu P L2pΩq; @i “ 1, . . . , n :
Bu

Bxi
P L2pΩqu.

It is equipped with the norm

}u}H1pΩq :“

˜

}u}22 `
n
ÿ

i“1

}
Bu

Bxi
}22

¸1{2

and the scalar product

ppu, vqq :“ pu, vq `
n
ÿ

i“1

p
Bu

Bxi
,
Bv

Bxi
q.

Theorem 23 The space H1pΩq is a separable Banach space.
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3.6 Spaces with scalar product

Scalar product plays an important role in many physical and engineering prob-
lems. We known the properties of the scalar product in Euclidean spaces Rn,
in L2pΩq or in H1pΩq. Now we present the general definition and properties of
spaces with scalar product.

Definition 50 Let X be (real) linear space. A mapping p¨, ¨q : X ˆX Ñ R is
called a scalar product, if for every x, y, z P X and α P R it holds:

(i) px, xq ě 0, px, xq “ 0 ô x “ ~0,

(ii) px, yq “ py, xq,

(iii) pαx, yq “ αpx, yq,

(iv) px` y, zq “ px, zq ` py, zq.

A linear space with a scalar product is called a space with scalar product.

Every scalar product induces a norm |||x||| :“
a

px, xq. If X endowed with this
norm is complete then X is called a Hilbert space. There holds the so-called
Cauchy-Schwarz inequality :

@x, y P X : |px, yq| ď |||x||| ¨ |||y|||.

Definition 51 A set M Ă X in a Hilbert space X is called orthogonal, if all
its elements are mutually orthogonal, i.e.

@x, y PM,x ‰ y : px, yq “ 0.

If in addition
@x PM : |||x||| “ 1,

then M is called an orthonormal system.

An example of an orthonormal system is the canonical basis in Rn or the set

"

1
?

2π

*

Y

"

1
?
π

sinnx; n P N
*

Y

"

1
?
π

cosnx; n P N
*

in L2p´π, πq.

3.7 Weak solution of a boundary value problem and the
Galerkin method

At the end we demonstrate the functional-analytic approach to the solution of
boundary value problems for ODE with discontinuous right hand side.

Let us consider the problem

´u2 ` u “ f v p0, 1q, up0q “ up1q “ 0.

29



If f P Cr0, 1s, then it makes sense to look for the classical solution, i.e. a
function u P C2p0, 1q X Cr0, 1s such that the above identities hold in the whole
interval p0, 1q. If the right hand side is less regular then the classical solution
need not exist. For this case we will demonstrate the derivation of the so-called
weak (generalized) solution.

Let us assume that u is a classical solution. Then for every v P V :“ tv P
C1r0, 1s; vp0q “ vp1q “ 0u it holds:

p´u2 ` u, vq “ pf, vq.

Integrating by parts we obtain:

p´u2 ` u, vq “

ż 1

0

p´u2pxq ` upxqqvpxq dx

“ r´u1pxqvpxqs1x“0 `

ż 1

0

u1pxqv1pxq ` upxqvpxq dx “ ppu, vqq.

Instead of a classical solution we can therefore look for a function u such that

ppu, vqq “ pf, vq

for all v P V . Since V is not complete in the norm of H1p0, 1q, it is not suitable
for the definition of the generalized solution u. By completing V in the norm of
H1p0, 1q we obtain the space

H1
0 p0, 1q :“ tv P H1p0, 1q; vp0q “ vp1q “ 01u.

Weak (generalized) solution of the boundary value problem thus can be defined

as a function u P H1
0 p0, 1q, which satisfies

@v P H1
0 p0, 1q : ppu, vqq “ pf, vq.

Note that this formulation has sense for every f P L2p0, 1q.
Let tviu

8
i“1 be a basis of the space H1

0 p0, 1q. Galerkin approximation of the
weak solution is defined as a function

unpxq :“
n
ÿ

i“1

αni vipxq,

which satisfies
@j “ 1, . . . , n : ppun, vjqq “ pf, vjq.

Expressing un in the above identity we obtain a system of linear algebraic equa-
tions

n
ÿ

i“1

αni ppvi, vjqq “ pf, vjq, j “ 1, . . . , n,

1The expressions vp0q, vp1q here denote the so-called trace of a function v.
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for the unknown coefficients ~u :“ pαn1 , . . . , α
n
nq
J. Defining the matrix A “

paijq
n
i,j“1, where aij :“ ppvj , viqq, and the vector ~b “ pbiq

n
i“1, where bi :“ pf, viq,

we can rewrite this system in the compact form

A~u “ ~b.

Due to the properties of the scalar product, the matrix A is symmetric positive
definite, hence the system has a unique solution for every ~b P Rn.

One can also show that the sequence of functions tunu is in certain sense
convergent and that its limit is the weak solution u.

4 Notation

Below are listed and explained some symbols frequently used in this text.
symbol meaning
N set of all natural numbers (1, 2, 3, . . . )
Z set of all integers
Q set of all rational numbers
R set of all real numbers
C set of all complex numbers
A Ă B A is a subset of B
AXB intersection
AYB union
AzB set difference
AˆB cartesian product
pa1, . . . , anq ordered n-tuple
pa, bq open interval
ra, bs closed interval
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