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Measurement of Stress on the Surface of a Body 
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4.1 – Introduction 
In the previous lectures we have shown a possibility of uniaxial stress measurement in long thin 
bars stressed by tension, pressure and bending. In this lecture we are going to show basic 
definitions necessary for measuring plane state of stress on the surface of a thin-walled pipe 
stressed by torsion and internal overpressure. It is suitable to stress that many of the further given 
definitions and relations are generally valid and do not refer to the thin-walled pipes only. 

4.2 – Torsion of a Thin-walled Cylindrical Pipe 
In the Fig. 4.1 there is a thin-walled pipe stressed by a torsion moment Mk (N.m).This torsion 
moment is induced by a couple of forces F. It is experimentally proven that the cross-sections 
perpendicular to the longitudinal axis of the pipe remain perpendicular even after the pipe 
loading. The cross-sections only angle mutually under the influence of the pipe deformation. The 
internal forces in the cross-section result in the occurrence of shear stresses τ. For the thin-walled 
pipe the following equation of equilibrium of internal and external torsion moments can be 
written: 

Kss Mrrh =⋅⋅⋅⋅ τπ2                                               (4.1a) 

2
hrrs += , where rs is an average radius. 

Herefrom we shall get a relation between an external torque MK and shear stress: 

22 s

K

rh
M

⋅⋅
=

π
τ                                                        (4.1b) 

The torque induces the pipe torsion whereas the surface straight line changes into a spiral due to 
the deformation. From the Fig. 4.1 a relation between the angle φ of the cross-section and the 
angle γ of the surface line is obvious, i.e. 

rl ⋅=⋅ ϕγ  

Hence                                                                                                                                       (4.2) 

l
r⋅= ϕγ  

 

 
 

 
 

 
 

 

Fig. 4.1 
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Angle of the surface line due to the torque loading of the pipe is called shear strain. The relation 
between the shear stress and the shear strain for a linear elastic body is given by the Hooke’s 
Law for the shear, i.e. 

γτ ⋅= G                                                                (4.3) 

The quantity G in the previous relation is the shear modulus and is expressed in MPa. There were 
two material constants introduced for the linear elastic body in the 1st Lecture, namely 
Young’s modulus of elasticity E and Poisson’s coefficient υ. It can be shown that the shear 
modulus can be expressed by means of the modulus of elasticity E and the Poisson’s 
coefficient υ, by the following relation: 

( )υ+
=

12
EG                                                                 (4.4) 

Let us withdraw an element from the pipe, crosshatched in the Fig.4.1. The momentum condition 
of equilibrium of this element results in the so called the rule of the conjugate shear stresses 
showing that the shear stresses on two mutually perpendicular surfaces are of the same size but 
opposite sign (Fig. 4.2). 

 
 

 
 

 
 

Fig. 4.2 
 

4.3 – Thin-walled Cylindrical Pressure Vessel  
In the Fig.4.3 there is schematic picture of a thin-wall pressure vessel stressed by internal 
overpressure p. When analysing the state of stress, we shall limit ourselves to the surface 
locations sufficiently distant from the vessel fronts. 
 

 
 

 
 

 
 

 
 

Fig. 4.3 
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The balance equation for the separated parts of the vessel (Fig. 4.3b) is as follows:  

02 2 =⋅−⋅⋅⋅ RphRa ππσ  

Herefrom 

h
Rp

a 2
⋅=σ                                                              (4.5) 

The balance equation of a split ring of the width d (Fig. 4.3c) is  

dRpdht ⋅⋅=⋅⋅ 22σ  

Herefrom 

h
Rp

t
⋅=σ                                                            (4.6) 

 

4.4 – Biaxial Stress – Mohr’s Circle 
An example of biaxial stress is the state of stress of a thin-walled pipe stressed by internal 
overpressure or torsion. This state of stress occurs also in other machinery parts, such as plates 
and shafts. The biaxial state of stress is a special case of plane state of stress. The plane state of 
stress will be dealt with in detail in the 5th Lecture. 
On the element of the thin-walled vessel we have denominated the normal stress in the direction 
of the axis by the index a (axial direction). For the circumferential direction we have used the 
index t (tangential direction). To be more general, let us denominate a as the direction x. 
Similarly let us denominate direction t as the direction y. The element withdrawn from the vessel 
surface with the new denomination of directions of the normal stresses is given in the Fig. 4.4a. 
Let us remark that the index shows the direction of the normal to the cross-section plane pq, the 
other index at the shear stress shows the direction of its action. 

 
 

 
 

 
 
 

 
Now let us determine the normal stress σξ and the tangential stress τξη on the cross-section surface 
pq (Fig. 4.4b). From the balance equations of a triangular element (see Fig.4.4b) after conversion 
we shall get the following relations: 

θσσσσσξ 2cos)(
2
1)(

2
1

yxyx −++=  ,                               (4.7) 

Fig. 4.4 
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θσστξη 2sin)(
2
1

yx −=   .                                             (4.8) 

If we replace the angle θ in the relations (4.2) by θ + π/2, we shall get the stresses ση , τηξ acting 
on the surfaces with the normal η (Fig.4.4c). It is valid: 

θσσσσση 2cos)(
2
1)(

2
1

yxyx −−+=  .                                 (4.9) 

θσστηξ 2sin)(
2
1

yx −−=  .                                          (4.10) 

Addition of the equations (4.7) and (4.9) results in the relation 

yx σσσσ ηξ +=+  ,                                                  (4.11) 

according to which the addition of normal stresses at two mutually perpendicular surfaces is 
constant. From the equations (4.8) and (4.10) we shall get the relation 

ηξξη ττ −=   ,                                                       (4.12) 

which shows that the shear stresses at two mutually perpendicular surfaces are identical but of 
the opposite sign (the rule of the conjugate shear stresses). 

The shear stresses τξη are zero, if θ = 0 and maximal, if θ = π/4. In that case 

)(
2
1

max yx σστ −=   .                                                  (4.13) 

The stresses σx , σy are so called main normal stresses, usually denominated as σ1 , σ2. As it is 
obvious from the Fig. 4.4, there are no shear stresses on the surfaces where the stresses σx , σy act. 
If jσx and σy are identical, there will be no shear stress on any surface of the element.  
 

Mohr’s circle for biaxial state of stress 
In the relation 4.7 to 4.10 let us denominate 

)(
2
1

yxs σσσ +=                                                        (4.14) 

Considering the relation (4.13), then the relations (4.7) and (4.8) can be re-written in the form  

θτσσξ 2cosmax ⋅=− s                                                (4.15a) 

θττξη 2sinmax ⋅−=                                                   (4.15b) 
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If the parameter 2θ is eliminated from the previous relations, we shall get the equation of the 
circle with independent variables σξ and τξη. This circle is illustrated in the Fig. 4.5. 
 

 
 

 
 

 
 

 
 

 
 

 
 

Fig. 4.5 
 

4.5 – Deformation at Biaxial State of Stress –Hooke’s Law 
Let us return to the state of stress of a thin-walled vessel loaded by internal overpressure p. 
Deformation in the axial direction εa evidently depends on both components of the stresses σa, σt. 
If each of these stresses acts separately, then axial strain εa will be given by superposition of their 
effects. Similarly this statement is valid for circumferential (tangential) deformation εt. i.e. 

[ ]taa E
συσε ⋅−= 1

  ,                                               (4.16a) 

[ ]att E
συσε ⋅−= 1

  .                                               (4.16b) 

Relative change of the vessel wall thickness is then given by the relation 

[ ]tar E
σσυε +−=   .                                                    (4.16c) 

The stresses σa and σt can be expressed from the equations (4.16a) and (4.16b) by means of the 
deformations εa, εt. i.e. 

( )taa
E ευε
υ

σ ⋅+
−

= 21   ,                                         (4.17a) 

( )att
E ευε
υ

σ ⋅+
−

= 21   .                                         (4.17b) 
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